Graphene is a carbon allotrope consisting of a single layer of atoms arranged in a honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating the presence of double bonds within the carbon structure. Graphene is known for its exceptionally high tensile strength, electrical conductivity, transparency, and being the thinnest two-dimensional material in the world.[4] Despite the nearly transparent nature of a single graphene sheet, graphite (formed from stacked layers of graphene) appears black because it absorbs all visible light wavelengths. On a microscopic scale, graphene is the strongest material ever measured. Photograph of a suspended graphene membrane in transmitted light. This one-atom-thick material can be seen with the naked eye because it absorbs approximately 2.3% of light. The existence of graphene was first theorized in 1947 by Philip R. Wallace during his research on graphite's electronic properties. In 2004, the material was isolated and characterized by Andre Geim and Konstantin Novoselov at the University of Manchester using a piece of graphite and adhesive tape. In 2010, Geim and Novoselov were awarded the Nobel Prize in Physics for their "groundbreaking experiments regarding the two-dimensional material graphene". While small amounts of graphene are easy to produce using the method by which it was originally isolated, attempts to scale and automate the manufacturing process for mass production have had limited success due to cost-effectiveness and quality control concerns. The global graphene market was $9 million in 2012, with most of the demand from research and development in semiconductors, electronics, electric batteries, and composites. The IUPAC (International Union of Pure and Applied Chemistry) advises using the term "graphite" for the three-dimensional material and reserving "graphene" for discussions about the properties or reactions of single-atom layers. A narrower definition, of "isolated or free-standing graphene", requires that the layer be sufficiently isolated from its environment, but would include layers suspended or transferred to silicon dioxide or silicon carbide.
https://www.youtube.com/watch?v=_tYMNxXPHyw
Is graphene starting to live up to its hype?
https://www.youtube.com/watch?v=YAWUhyzeThA
The Strange Physics Of The Super Small With Jim Al-Khalili