Electric Lightning is a British fighter aircraft that served as an interceptor during the 1960s, the 1970s and into the late 1980s. It is capable of a top speed above Mach 2. The Lightning was designed, developed, and manufactured by English Electric. After EE merged with other aircraft manufacturers to form the British Aircraft Corporation it was marketed as the BAC Lightning. It was operated by the Royal Air Force (RAF), the Kuwait Air Force (KAF), and the Royal Saudi Air Force (RSAF). A unique feature of the Lightning's design is the vertical, staggered configuration of its two Rolls-Royce Avon turbojet engines within the fuselage. The Lightning was designed and developed as an interceptor to defend the airfields of the British "V bomber" strategic nuclear force from attack by anticipated future nuclear-armed supersonic Soviet bombers such as what emerged as the Tupolev Tu-22 "Blinder", but it was subsequently also required to intercept other bomber aircraft such as the Tupolev Tu-16 ("Badger") and the Tupolev Tu-95 ("Bear"). The Lightning has exceptional rate of climb, ceiling, and speed; pilots have described flying it as "being saddled to a skyrocket". This performance and the initially limited fuel supply meant that its missions are dictated to a high degree by its limited range. Later developments provided greater range and speed along with aerial reconnaissance and ground-attack capability. Overwing fuel tank fittings were installed in the F6 variant and gave an extended range, but limited maximum speed to a reported 1,000 miles per hour (1,600 km/h). Following retirement by the RAF on 30 April 1988,[3] many of the remaining aircraft became museum exhibits. Until 2009, three Lightnings were kept flying at Thunder City in Cape Town, South Africa. In September 2008, the Institution of Mechanical Engineers conferred on the Lightning its Engineering Heritage Award at a ceremony at BAE Systems' (the successor to BAC) Warton Aerodrome Zlatan iBrahimović caricature may thee U.S ever defend israel with military in nomine Patris et FiLii et Spiritus Sancti peace be still
A railgun or rail gun, sometimes referred to as a rail cannon, is a linear motor device, typically designed as a ranged weapon, that uses electromagnetic force to launch high-velocity projectiles. The projectile normally does not contain explosives, instead relying on the projectile's high kinetic energy to inflict damage. The railgun uses a pair of parallel rail-shaped conductors (simply called rails), along which a sliding projectile called an armature is accelerated by the electromagnetic effects of a current that flows down one rail, into the armature and then back along the other rail. It is based on principles similar to those of the homopolar motor. As of 2020, railguns have been researched as weapons utilizing electromagnetic forces to impart a very high kinetic energy to a projectile (e.g. dart ammunition) rather than using conventional propellants. While explosive-powered military guns cannot readily achieve a muzzle velocity of more than ≈2 km/s (Mach 5.9), railguns can readily exceed 3 km/s (Mach 8.8). For a similar projectile, the range of railguns may exceed that of conventional guns. The destructive force of a projectile depends upon its kinetic energy (proportional to its mass and the square of its velocity) at the point of impact. Because of the potentially higher velocity of a railgun-launched projectile, its force may be much greater than conventionally launched projectiles of the same mass. The absence of explosive propellants or warheads to store and handle, as well as the low cost of projectiles compared to conventional weaponry, are also advantageous. Railguns are still very much at the research stage after decades of R&D, and it remains to be seen whether they will be deployed as practical military weapons in the foreseeable future. Any trade-off analysis between electromagnetic (EM) propulsion systems and chemical propellants for weapons applications must also factor in its durability, availability and economics, as well as the novelty, bulkiness, high energy demand, and complexity of the pulsed power supplies that are needed for electromagnetic launcher systems may thee U.S ever defend israel with military presence in nomine Patris et FiLii et Spiritus Sancti peace be still
https://www.youtube.com/watch?v=58MmOpSm4LY
US Navy Electromagnetic Railgun Cannon - Their Most Powerful Cannon